Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks

Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks

A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures

Key Features
Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks
Learn the mathematical concepts required to understand how deep learning models function
Use deep learning for problems related to vision, image, text, and sequence applications

VIEW BOOK


Time Series with Python: How to Implement Time Series Analysis and Forecasting Using Python

Time Series with Python: How to Implement Time Series Analysis and Forecasting Using Python

Time Series is an exciting and important part of Data Analysis. Time Series Data is more readily available than most forms of data and answers questions that cross-sectional data struggle to do. It also has more real world application in the prediction of future events. However it is not generally found in a traditional data science toolkit. There is also limited centralized resources on the applications of Time Series, especially using traditional programming languages such as Python.

VIEW BOOK


The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable

The AI-Powered Enterprise: Harness the Power of Ontologies to Make Your Business Smarter, Faster, and More Profitable

Learn how to develop and employ an ontology, the secret weapon for successfully using artificial intelligence to create a powerful competitive advantage in your business.

The AI-Powered Enterprise examines two fundamental questions: First, how will the future be different as a result of artificial intelligence? And second, what must companies do to stake their claim on that future?

VIEW BOOK


Neural Machine Translation

Neural Machine Translation

Deep learning is revolutionizing how machine translation systems are built today. This book introduces the challenge of machine translation and evaluation – including historical, linguistic, and applied context — then develops the core deep learning methods used for natural language applications. Code examples in Python give readers a hands-on blueprint for understanding and implementing their own machine translation systems. The book also provides extensive coverage of machine learning tricks, issues involved in handling various forms of data, model enhancements, and current challenges and methods for analysis and visualization. Summaries of the current research in the field make this a state-of-the-art textbook for undergraduate and graduate classes, as well as an essential reference for researchers and developers interested in other applications of neural methods in the broader field of human language processing.

VIEW BOOK


Mathematics for Machine Learning

Mathematics for Machine Learning

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book’s web site.

VIEW BOOK


Hands-On One-shot Learning with Python: Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Hands-On One-shot Learning with Python: Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Get to grips with building powerful deep learning models using PyTorch and scikit-learn

Key Features
Learn how you can speed up the deep learning process with one-shot learning
Use Python and PyTorch to build state-of-the-art one-shot learning models
Explore architectures such as Siamese networks, memory-augmented neural networks, model-agnostic meta-learning, and discriminative k-shot learning

VIEW BOOK


Cybernetics, Cognition and Machine Learning Applications: Proceedings of ICCCMLA 2019 (Algorithms for Intelligent Systems)

Cybernetics, Cognition and Machine Learning Applications: Proceedings of ICCCMLA 2019 (Algorithms for Intelligent Systems)

This book provides a collection of selected papers presented at the International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2019), which was held in Goa, India, on 16–17 August 2019. It covers the latest research trends and advances in the areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber-physical systems, and cybernetics.

VIEW BOOK


Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter: Build scalable real-world projects to implement end-to-end neural networks on Android and iOS

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter: Build scalable real-world projects to implement end-to-end neural networks on Android and iOS

Learn how to deploy effective deep learning solutions on cross-platform applications built using TensorFlow Lite, ML Kit, and Flutter

Key Features
Work through projects covering mobile vision, style transfer, speech processing, and multimedia processing
Cover interesting deep learning solutions for mobile
Build your confidence in training models, performance tuning, memory optimization, and deploying neural networks through every project

VIEW BOOK


Machine Learning For Beginners

Machine Learning For Beginners

Machine learning is going to be something that you are going to use so that you can discover why and how you are getting the outcomes that you are getting with the program that you are using.

With machine learning, you are going to have the option of putting the data in that you want into the program and getting the results that you want to get. You are going to better understand where you made a mistake so that you can go back in and fix it.

VIEW BOOK